Find maximum xor of k elements in an array
Given an array arr[] of N integers and an integer K. The task is to find the maximum xor subset of size K of the given array.
Lets take a look at an example.
Input
arr[] = {2, 5, 4, 1, 3, 7, 6, 8}, K = 3
Output
15
Explanation
We can get 15 by selecting 4, 5, 6, 8
Naive approach
Iterate over all subsets of size K of the array and find maximum xor among them.
Implementation
// C++ implementation
#include <bits/stdc++.h>
using namespace std;
// Function to return the maximum xor for a
// subset of size k from the given array
int Max_Xor(int arr[], int n, int k)
{
// Initialize result
int maxXor = INT_MIN;
// Traverse all subsets of the array
for (int i = 0; i < (1 << n); i++) {
// __builtin_popcount() returns the number
// of sets bits in an integer
if (__builtin_popcount(i) == k) {
// Initialize current xor as 0
int cur_xor = 0;
for (int j = 0; j < n; j++) {
// If jth bit is set in i then include
// jth element in the current xor
if (i & (1 << j))
cur_xor = cur_xor ^ arr[j];
}
// Update maximum xor so far
maxXor = max(maxXor, cur_xor);
}
}
return maxXor;
}
// Main Function
int main()
{
int arr[] = { 2, 5, 4, 1, 3, 7, 6, 8 };
int n = sizeof(arr) / sizeof(int);
int k = 3;
cout << Max_Xor(arr, n, k);
return 0;
}
15
Efficient approach
The problem can be solved using dynamic programming. Create a dp table dp[i][j][mask] which stores the maximum xor possible at the ith index (with or without including it) and j denotes the number of remaining elements we can include in our subset of K elements. Mask is the xor of all the elements selected till the ith index. This approach will only work for smaller arrays due to space requirements for the dp array.
Implementation
// C++ implementation
#include <bits/stdc++.h>
using namespace std;
#define MAX 10000
#define MAX_ELEMENT 50
int dp[MAX_ELEMENT][MAX_ELEMENT][MAX];
// Function to return the maximum xor for a
// subset of size k from the given array
int Max_Xor(int arr[], int i, int j, int mask, int n)
{
if (i >= n) {
// If the subset is complete then return
// the xor value of the selected elements
if (j == 0)
return mask;
else
return 0;
}
// Return if already calculated for some
// mask and j at the i'th index
if (dp[i][j][mask] != -1)
return dp[i][j][mask];
// Initialize answer to 0
int ans = 0;
// If we can still include elements in our subset
// include the i'th element
if (j > 0)
ans = Max_Xor(arr, i + 1, j - 1, mask ^ arr[i], n);
// Exclude the i'th element
// ans store the max of both operations
ans = max(ans, Max_Xor(arr, i + 1, j, mask, n));
return dp[i][j][mask] = ans;
}
// Main Function
int main()
{
int arr[] = { 2, 5, 4, 1, 3, 7, 6, 8 };
int n = sizeof(arr) / sizeof(int);
int k = 3;
memset(dp, -1, sizeof(dp));
cout << Max_Xor(arr, 0, k, 0, n);
return 0;
}
15